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Dynamics of solitary waves in smectic-C* liquid crystals

E. N. Tsoy,1 I. W. Stewart,2 and F. Kh. Abdullaev1
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The dynamics of solitary waves in ferroelectric liquid crystals is considered in the context of an overdamped
double sine-Gordon model. Various possible types of single waves are studied. The dependence of wave
velocity and scale on the system parameters and initial conditions is found. Sharp initial profiles lead to waves
with a universal form. The parameters of the wave arising from smooth profiles are determined also by the
scale of the initial conditions. Numerical calculations show good agreement with analytical results. The pos-
sibility of using such waves to improve the characteristics of liquid crystal devices is also discussed.
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I. INTRODUCTION

Static and dynamic structures in liquid crystals, formi
because of inhomogeneity in space and the time-depen
distribution of the average molecular orientation, are the
cus of intensive research@1–3#. The study of such structure
is useful both for determining liquid crystal properties and
a basis of new electro-optical devices. The average local
lecular orientation is described by the unit vectorn, called
the director. In many cases solitary waves occur~‘‘walls,’’
‘‘fronts,’’ or ‘‘kinks’’ ! that propagate from a region wit
stable molecular orientation into an unstable or metasta
region. Often, such a wave has an asymptotically unive
form and velocity, not dependent upon the peculiarities
the initial conditions. In such cases the corresponding eq
tion for the director motion is frequently a type of nonline
diffusion equation that exhibits such phenomena. Differ
processes in liquid crystals are described by this appro
orientational waves in nematics under magnetic or elec
fields, cholesteric-nematic transitions induced by a magn
field, walls in electro-hydrodynamic instabilities in liqui
crystals, switching in smectic liquid crystals, etc.~see Refs.
@2,4#, and the references therein!.

The reorientation of molecules in ferroelectric smect
C* liquid crystals~FLCs! through a propagation of solitar
waves ~‘‘domain walls’’! was first investigated by Cladi
et al. @5#. They analyzed the driven sine-Gordon equation
taking into account the inertia term. It is known that t
influence of this term is negligible in many types of liqu
crystals@1#. The model, based on a nonlinear diffusion equ
tion, for solitary waves in FLCs was first suggested
Maclennanet al. @6#. Further studies can be found in th
review @7#, where methods of analysis, theoretical resu
and numerical calculations of FLC dynamics are presen
In this review both the cases of thick and thin liquid crys
samples are considered. The latter case is characterized
strong influence of the boundaries upon the sample al
ment; that is, the surface alignment of the glass plates bou
ing the sample cell affect the bulk behavior. Interesting
periments and numerical simulations for thin FLC cells a
presented in@8#. Results, based on a ‘‘marginal stability
theory, for the velocity of solitary waves in smectic-C*
samples are described in@9#.
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In the present paper some parameters of solitary wa
such as the velocity and the width, in FLCs are determin
The analytical dependence of parameters on the amplitud
the electric field and properties of the liquid crystal is foun
A choice of appropriate boundary conditions is shown
increase the velocity of waves. Using such a possibility, o
can decrease the switching time of liquid crystal elect
optical devices. The paper is organized as follows. In Sec
the model for describing FLC dynamics, based on an ov
damped double sine-Gordon~DSG! equation, is presented
We describe also a simple procedure for determining
wave velocity. Possible types of solitary waves in smec
C* samples and the dependence of the velocity on the
tem parameters are considered in Sec. III. The influence
various boundary conditions and the evolution of solutio
from two-kink initial conditions are also discussed. Secti
IV briefly summarizes the results obtained.

II. MODEL AND METHOD OF ANALYSIS

Smectic-C* liquid crystals are layered structures in whic
the directorn has the constant tilt angleu with respect to the
layer normal. The azimuthal angle of the director chang
gradually from layer to layer, forming the well known helic
structure @1#. This description is valid for large infinite
samples. We study thin or ‘‘surface stabilized’’ FLC cel
@10#, with thicknessd of order less than the helical pitch, an
suppose that the smectic layers are oriented parallel to thxy
plane. The influence of plate boundary surfaces in such c
is strong enough to suppress the helix, so that the dire
distribution is uniform in thez direction and changes only in
thex direction~Fig. 1!. The polarizationp is normal ton and
the z axis. Letf be the azimuthal angle ofp, i.e., f5p/2
2c, wherec is the orientation angle of the orthogonal pr
jection ofn onto the smectic layers. Assuming that the sm
tic tilt angle u is constant, the equation for the director m
tion has the form@7,11#

hf t2Kfxx52PE sinf1
eaE2 sin2u

4p
sinf cosf, ~1!
5568 © 1999 The American Physical Society
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PRE 60 5569DYNAMICS OF SOLITARY WAVES IN SMECTIC-C* . . .
whereh is a viscosity coefficient,K is an elastic constant,E
is the magnitude of the electric field applied in the plane
smectic layers parallel to thex axis, andea is the dielectric
anisotropy. In the notation of the smectic continuum the
of Leslie et al. @12,13#, h is equal to the rotational viscosit
coefficient l5 of the director around a fictitious ‘‘cone,’
while K5B3. The first term on the right-hand side of Eq.~1!
is the ferroelectric torque and the second term is the die
tric torque. Boundary conditions ought to be chosen so
f(x52d/2,t)5fL andf(x5d/2,t)5fR wherefL andfR
are constants. Nevertheless, to enable a more tractable in
tigation that exhibits the qualitative features and the gen
properties of solitary waves in the above system, we cons
the case asd→`. Consequently, we consider the case of
infinite system.

In dimensionless variables, Eq.~1! has the form@7#

ft2fjj1s sinf1a sin~2f!50, ~2!

where j5x/x0 x05@K/(uPEu)#1/2, t5t/t0 , t05h/(uPEu),
s5sgn(E), a52easE sin2 u/(8pP). Since Eq.~2! is invari-
ant with respect to the transformations→2s,f→p2f or
f→p1f, we consider only the cases51. Equation~2! is
the overdamped double sine-Gordon equation, which
also describe the dynamics of smectic-C liquid crystals sub-
jected to electric fields that are tilted with respect to t
smectic planes@14,15#. Equation~2! is a type of nonlinear
diffusion equation for which it is known that solitary wave
arising from a wide class of initial conditions have a unive
sal form and velocity@4,16,17#.

Let us describe the procedure for finding asymptotic v
ues ast→` for the wave parameters in the nonlinear diff
sion equation of the form

ft2fjj1F~f!50, ~3!

where F(f) is some nonlinear function. Boundary cond
tions are of the first or the second kind (fj50 at j56`)
and initial conditions are assumed to be piecewise cont
ous. The procedure below is some combination of ph
plane analysis~see, e.g.,@4,16,17#!, ‘‘marginal stability’’
theory@19,20#, and Hagan’s theory@18#. We believe that this
procedure is one of the simplest ways to obtain complete
exact information about solitary waves. Phase plane ana

FIG. 1. Director distribution in a thin ‘‘surface stabilized’’ FLC
cell. ‘‘Nails’’ mean molecules are directed out of the figure plan
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gives all possible types of waves, while the two other the
ries allow us to find wave parameters. The approach can
called ‘‘the principle of the least dissipation.’’ It means th
the velocity of the steady state wave of Eq.~3! is equal to the
lowest possible dissipation on the trajectory of the corr
sponding ordinary differential equation@see Eq.~4!#. The
trajectory should satisfy appropriate boundary and other c
ditions. Thus, instead of dealing with the dispersion relat
of the linearized version of Eq.~3! as it is in ‘‘marginal
stability theory,’’ one can analyze Eq.~4!.

Step (i). Since we are interested in stationary solutions
is reasonable to reduce Eq.~3! to an ordinary differential
equation by introducing the usual variableX5j2vt, where
v is the wave velocity. This yields the equation

d2f

dX2
1v

df

dX
1

dV~f!

df
50, F~f![2

dV~f!

df
. ~4!

Equation ~4! is the equation of motion of a particle in
potentialV(f) in the presence of ‘‘dissipation’’ with coeffi-
cient v.

Step (ii). Find equilibrium pointsfe of Eq. ~4! or static
uniform states of Eq.~3! from the conditiondV(f)/df50.
Check the stability of these equilibrium points by calculati
V9(fe)[d2V(fe)/df2. If V9(fe),0 @V9(fe).0#, the
point fe is stable~unstable!. Determine the type of equilib-
rium points in the phase plane by finding characteristic
ponentsl (f5fe1dfe2lX):

l6~v,fe!5
v6Av224V9~fe!

2
. ~5!

If l6 are complex with Im(l6)Þ0, thenfe is a focus. If
l6 are real andl1l2,0 thenfe is a saddle (S), while if
l6 are real andl1l2.0, thenfe is a node (N). Note that
stable~unstable! points of Eq.~4! or minima ~maxima! of
V(f) correspond to unstable~stable! static states of Eq.~3!
~see also the paper by Lam in Ref.@2# and review@7#!.

Step (iii). Construct possible types of solitary wave
Hereafter we assume thatf(2`,t)5fL and f(`,t)
5fR , where fL ,fR are static states. Hence the solita
wave is a front moving from a stable state to an unsta
~metastable! state. In order to simplify this step of the pro
cedure it is easiest to plot the phase plane consisting of
anddf/dX for Eq. ~4!. The phase trajectory, connecting tw
given equilibrium pointsfL andfR , then corresponds to a
solitary wave. As a result of the boundary conditions for E
~3!, any equilibrium point cannot be a focus; this indicat
that only the following types of solitary waves are possib
@N2N#, @N2S# or @S2N# and @S2S#. Here, the notation
@A2B# indicates a front moving fromA to B asX→`.

Step (iv). Find the asymptotic velocity ast→` and the
width of each solitary wave. An@N2N# wave is usually a
collection of two or more waves, and it should be conside
separately~see Sec. III!. In most cases~see@4,17,18#!, the
velocity of @S2S# waves is definite; i.e., the phase traje
tory, connecting two saddle points, exists only for a uniq
value of the ‘‘dissipation’’v5vs . This means that any ini-
tial condition with boundary conditions, corresponding
saddle points, tends to a solitary wave moving with spe
vs . Another situation is the case of solitary waves with

.
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TABLE I. Types of solitary waves.

Parameter Wave velocity for
a Wave Asymptotic initial conditions

(s51) type states Sharp Smooth

a,21/2 @S2S# @fN↔(2p2fN)# 0 0
@S2N# @fN→0# v1 v1b

@S2N# @fN→p# v3 v3b

@S2N# @(2p2fN)→p# v3 v3b

uau,1/2 @S2S# @0↔2p# 0 0
@S2N# @0→p# >v3 v3b

a.1/2 @S2S# @0↔2p# 0 0
@S2N# @0→fN# >v2 v2b

@S2N# @p→fN# v2 v2b

@S2N# @p→(2p2fN)# v2 v2b

@S2S# @0→p# v4 v4
iu

ne
i-
le

-
nd
us

f
,

ia
e

-

o
th

e-

it

pe

-

o-

al

are
e-

oes
tial

e is
p-
li-
x-
the
no-

l
lib-
,
ing
node as one of the asymptotic states. As for any equilibr
point, a node is characterized by two eigenvalues@see Eq.
~5!#. The greater in absolute value is called ‘‘usual’’ and o
says thatf(j,t) decays inj at a usual rate. The other e
genvalue is ‘‘accidental’’ and the corresponding rate is cal
accidental. In the casev.0, so thatV(f).0 andl6.0,
l1 is the usual eigenvalue andl2 is the accidental eigen
value. These eigenvalues determine space scales, depe
on how the evolution of initial conditions changes. Let
assume that the behavior off(j,0) at infinity is as follows:

f~j,0!5fL1d1ebj as j→2`, ~6!

f~j,0!5fR1d2e2bj as j→`, ~7!

where b.0. One says the initial condition is ‘‘sharp,’’ i
b.l th and ‘‘smooth’’ when this inequality is reversed
wherel th is the threshold scale. The velocity of sharp init
profiles for solitary@N2S# waves is determined from th
condition that ensures thatl6 is real or equivalentlyD
[v224V9(fN)50 wherefN is a node equilibrium; there
fore the velocity is given by~see@4,16,17#!

v* 562AV9~fN!. ~8!

The choice of sign in the above depends on where the n
fN is situated. The threshold scale can be found from
condition

l th5ul6~v* ,fN!u5uv* /2u. ~9!

The asymptotic velocity for smooth initial profiles is d
termined from the conditionl25b. This means that the
behavior of the initial profile asj→6` determines the
shape of the resulting wave and consequently its veloc
Thus the velocity of a solitary@N2S# wave arising from
smooth initial conditions is

vb* 56
b21V9~fN!

b
, ~10!
m

d

ing

l

de
e

y.

where the indexb indicates dependence on the initial rateb.
Therefore, any sharp initial condition tends to a solitary@N
2S# wave with a universal shape and velocityv* , while a
smooth initial profile tends to a solitary wave with its sha
and velocity depending on the initial rateb. Details, restric-
tions for the functionV(f) and proofs of some related re
sults can be found in@18#.

The space scale of the wave, or the widthw1/2, can be
determined as the half-amplitude width offj(j,t). The
width w1/2 can be estimated by using characteristic exp
nents, so thatw1/2;1/l(v,fL)11/l(v,fR), where the ap-
propriatev from Eq. ~8! or Eq. ~10! should be chosen.

The velocityv* is the same as that predicted by margin
stability theory@19,20#. It follows from the theory that there
exists a threshold velocity, so that fast traveling waves
stable. Due to a ‘‘selection mechanism,’’ the asymptotic v
locity tends to the threshold value. However, the theory d
not consider the dependence of the velocity on the ini
conditions for smooth profiles. Notice that Eqs.~8!–~10! are
valid under the assumption that the corresponding wav
monotonic. Below, we also consider cases where our a
proach, and that of marginal stability theory, are not app
cable. It is shown that marginal stability theory can be e
tended to incorporate additional conditions. In the case of
overdamped DSG equation the additional condition of mo
tonicity for the asymptotic profile should be supposed.

III. APPLICATION TO THE OVERDAMPED DSG
EQUATION

The reduction of the overdamped DSG equation~2! has
the form of Eq.~4! with the potential

V~f!52@s~12cosf!1a„12cos~2f!…/2#. ~11!

Therefore for any parametera there exist static statesf
5pk, wherek is an integer; further, foruau.1/2, additional
statesfN56cos21@2s/(2a)#12pk appear in the system. Al
possible types of solitary waves, corresponding to equi
rium states atj56` with the appropriate wave velocities
are listed in Table I, where the velocities are calculated us
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Eqs.~8! and ~10!:

v156A24~s12a!, v1b56~b22s22a!/b,

v256A2~4a22s2!/a, v2b56S b21
4a22s2

2a D Y b,

~12!

v356A4~s22a!, v3b5~b21s22a!/b.

The dependence ofv3 ~for s51 anda,0) on the system
parameters was also found by Maclennanet al. @7#, who ap-
plied the result from Ref.@16#. The velocityv4 corresponds
to the exact solution of Eq.~2! found by Schilleret al. @14#:

f~j,t!52 tan21@exp~A2a~x2v4t !#, ~13!

v45@1/~2a!#1/2.

The dynamics of solitary waves in FLCs was also conside
by van Saarlooset al. @9#, who studied only the case for@0
2p# waves for different values of fields, while other typ
of waves were not analyzed. The exact solution, Eq.~13!,
and other complex solutions to Eq.~1!, can be derived via a
Painlevéanalysis@21#; Stewart@22# has examined the stabi
ity of this solution in the context of traveling waves for no
linear diffusion equations and Cladis and van Saarloos@11#
have also discussed marginal stability.

To check the analytical predictions we calculated Eq.~2!
numerically fors51 and various values for the parametera.
Both piecewise linear and tanh initial conditions were us
The first type of profile to be considered consists of t
uniform states at the ends of the space interval, connecte
a linear function. The second type considered is represe
by the equation

f5fL1
fR2fL

2
~11tanhbj!, ~14!

for some constantb. The calculations were performed usin
the explicit finite difference method~see, e.g.,@23#, Chap.
17! with a four-point, two-layer scheme. The space and ti
steps were equal to 0.05 and 0.0005, respectively, for m
calculations. Fixed boundary conditionsf(6L/2,t)5const
were used. The parameters was set to 1 and the length o
the systemL was varied from 50 to 100. It should be note
that numerical simulations of Eq.~2! in a wide region of
parameters were also performed by Maclennanet al. @7#.
They have computed director reorientation times as a fu
tion of the electric field and system parameters. The auth
of paper@7# have also shown that for smallL ~or for small
E), the dynamics are conditioned by transition process
while for cells with large enoughL ~or for large E) the
dynamics are determined by the evolution of a steady s
wave. Our consideration corresponds to the case of largL,
when the obtained formulas~12! are valid. An important
point is that we also consider various boundary condition

In all numerical simulations, after a short transition pr
cess, the solitary wave moves with fixed velocity and fo
~within the accuracy of calculations!. The typical evolution
for a @0→fN# wave form is presented in Fig. 2; the dynam
ics of solitary waves with other boundary conditions is sim
d
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lar. Results, summarized in Figs. 3 and 4, show a go
agreement between the two approaches. Figure 3 repre
the dependence of the asymptotic velocity on the parameta
for various waves, while Fig. 4 shows the dependence of
asymptotic velocity on the space scale of the initial condit
dependent uponb. However, there is a noticeable deviatio
in the results for@0→fN# and @0→p# waves, whena is
close to 1/2. Numerically obtained velocities exceed the
pected theoretical values@see Eq.~12!#. This result can be
explained in the following way~we consider for simplicity
only a @0→fN# wave!. Indeed, the equilibriumfN becomes
a node atv5v2, but the separatrix@02fN# also crosses the
f axis at some pointfC.fN ~Fig. 5!. The corresponding
solitary wave is therefore not monotonic~see the inset in Fig.
5!. The monotonic profile will be realized forv.v2, at
which the separatrix approaches the pointfN from below.

FIG. 2. Typical evolution of the@0→fN# wave fora51.

FIG. 3. Comparison of analytical~lines! and numerical~points!
results for sharp initial conditions. Corresponding waves are in
cated near each type of point.~a! uau.1/2; ~b! uau,1/2, @0→p#
wave.
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We note that, in this case, the absolute value of
asymptotic velocity corresponds to theminimalvelocity, sat-
isfying both the condition that the equilibriumfN is a node
and the condition that the resulting profile is monoton
Thus, the conclusion gained from the marginal stabi
theory, that the marginal value of velocity is realized asym
totically, is valid in this case also when the aforemention
additional restriction on monotonicity is taken into accou

For almost all solitary waves, listed in Table I, the wa
width decreases with increasing absolute value of
asymptotic velocity, when the parametera changes. More-
over, the product ofuv i u andw1/2 is seen to be approximatel
constant for a wide range ofa values. This observation
agrees with Eq.~9! becausew1/2 can be evaluated as 1/l th .
The @0→p# wave for 0,a,1/2 does not satisfy this regu
larity, since both the wave velocity and the wave width d
crease with increasinga.

We now discuss the possibility of applying our results
real cells. We can use formulas@Eqs.~12! and~13!# for v, if
the cell thickness is much greater than the scale of the s
tary wave,d@1/ul6u. In this case the switching time can b

FIG. 4. Dependence of the wave velocity on the initial rate
smooth initial conditions.a521 for the@fN→0# wave withv1b ,
x0th52.0; a51 for the @0→fN# wave with v2b , x0th51.23; and
a521 for the @fN→p# wave with v3b , x0th51.16, wherex0th

51/l th @see Eq.~9!#.

FIG. 5. Phase space of Eqs.~4!,~11! for a50.4 and v5v3

50.894, calculated by using Eq.~12!. The phase trajectory crosse
the fX axis at the pointf5fC . The inset represents the solita
wave corresponding to this trajectory.
e

.

-
d
.

e

-

li-

evaluated asd/v i . Possibly the most important result fo
applications is that the velocity of a wave havingfN as one
of the asymptotic states is greater than the velocity in ot
cases~see Fig. 3!. Moreover, the velocitiesv i , i 51,2,3,
increase in absolute value with increasing magnitude of
electrical fielduEu ~or, equivalently, increasinguau). There-
fore the switching time is seen to be essentially improved
choosing appropriate boundary conditions. The key idea
that one of the conditions should correspond to the lowes
the minima of the potentialV(f).

Another problem is the difficulty in preparing sample
with exactly the required boundary conditions discuss
above. The sensitivity to small variations of values at t
boundaries for the@0→fN# wave is shown in Fig. 6. If the
boundary valuef(1`,t).fN then the wave will transform
to a@0→p# wave, after which it will move with velocityv4.
If the boundary valuef(1`,t),fN , then the value off
near the right end of the interval decreases to 0; i.e.
switching will be faster than predicted. A solitary wave wi
an unstable state as one of the boundary conditions is ph
cally an impossible object when consideringinfinite systems.
However, similar structures can be realized in finite FL
cells. Suppose that the boundary condition on one cell p
corresponds to the stable state, while on the other plate
boundary condition represents an unstable state. Wit
switch of the electric field from zero to an appropriate val
E0, the solitary wave, which is a front from a stable to
unstable state, will propagate. We believe that the veloci
of such waves in finite samples will be close to those velo
ties predicted by Eq.~12! for infinite systems. Probably, th
switching speed could be optimized for sign reversing fiel
Note that a change in the sign ofE will give a different value
of fN whenuau.1/2, so that one of the boundary values (fL
or fR) will not be the static state. Therefore, the switch ofE
from E0 to 2E0 will lead either to the breaking of the un
stable state or to the propagation of several waves. Choo
appropriate values of system parameters andE0, most likely,
one could minimize the switching time. The results presen

r

FIG. 6. Sensitivity to small variations of boundary conditio
for a @0→fN# wave. ~a! f(50,t)51.01fN ; ~b! f(50,t)
50.99fN .
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here are novel and the consequences of reversing the
have yet to be exploited. Nevertheless, considering the si
signedE field yielded some unexpected results, which a
worthy of future investigation from both the theoretical a
experimental points of view.

To evaluate the wave width and velocity we use the f
lowing values for the system parameters:K;10211 N, P
;1025 C/m2, h;1023 Pa c, E;53106 V/m. Then we
have the space scalex0;0.431026 m and the time scale
t0;231025 s, so that the characteristic velocity isx0 /t0

5AKPE/h;0.02 m/s. Therefore, for different values ofE
the wave velocity is of the order 1022 to 1021 m/s, while the
width is ;0.531026 to 531026 m. The assumption thatd
→` is correct for cells with thicknessd;10 to 40mm. The
switching time in such cells is therefore of the order 1025 to
1023 s.

The results for solitary waves can be used in the anal
of the evolution of multikink profiles. Let us show this b
considering the propagation of two solitary waves. Supp
that for some equilibrium statefm , the waves@fL2fm#
and @fm2fR# exist. Let us then look for a solution to Eq
~2! in the form

f~j,t!5fA~j,t!1fB~j,t!2fm , ~15!

which can be considered as the superposition of two soli
waves@fL2fm# and @fm2fR#. Substituting Eq.~15! into
Eq. ~2!, one can obtain a set of equations describing
‘‘interaction’’ of solitary waves, labeledA andB:

ft
A2fjj

A 1s cos~fB2fm!sinfA

1a$cos@2~fB2fm!#sin~2fA!%50, ~16!

ft
B2fjj

B 1s cos~fA2fm!sinfB

1a$cos@2~fA2fm!#sin~2fB!%50. ~17!

Let us consider the waveA with the center~or extrema of
fj

A) situated atj5jA. If the distanceL[jB2jA between
the wave centers is large, the valuee.12cos(fB2fm) in
some neighborhood of the pointjA is small,e!1. Then the
first equation~16! of the above set can be written as

ft
A2fjj

A 1~12e!s sinfA1~124e!a sin~2fA!50.
~18!

Assuming bothfA andfB are ‘‘sharp’’ solitary waves, the
parametere can be evaluated ase5d exp(2uvuL/2), whered
is some constant. Therefore the velocity of theA wave tends
exponentially with increasing distanceL to the velocity of
the single @fL2fm# wave.

The numerically calculated evolution of two kinks
shown in Fig. 7. The process of the interaction of@0→fN#
and @p→fN# waves is demonstrated in Fig. 7~a!. These
waves move towards each other with velocities close tov2,
then they form a@0→p# wave, which propagates into th
metastable statep with velocity v4. Wave velocities ob-
tained numerically are close to the velocities of single wa
up to the point of wave annihilation. The splitting of a@0
→p# wave to@fN→0# and @f→p# waves is presented in
ld
le

e

-

is

e

ry

e

s

Fig. 7~b!. Notice that the evolutions displayed in Figs. 7~a!
and 7~b! are realized for opposite signs of the electric fieldE,
so that one can consider some of the stages in Fig. 7 as b
representative of the evolution off after switching the di-
rection of the field.

IV. CONCLUSIONS

In this paper a procedure for finding the parameters
solitary waves for nonlinear diffusion equations with appr
priate boundary conditions is described. By using this pro
dure we have found parameters of solitary waves
smectic-C* liquid crystals. We have shown that, by choosi
appropriate boundary conditions, the resulting solitary wa
have velocities greater than the velocity of a@02p# wave.
This fact can be used for improving the switching time f
electro-optical liquid crystal devices by optimizing th
boundary conditions in finite cells to approximate those d
cussed above. For example, a cell designed to havefN as
one of its boundary values can possess a faster switc
time than that obtained via the usual@02p# wave; this has
been discussed in detail in Sec. III above. The results,
tained for solitary waves in infinite systems, can therefore
exploited in the analysis of switching processes in finite s
tems and for studying the general evolution of multikin
profiles.
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FIG. 7. Evolution of two-kink waves.~a! ‘‘Annihilation’’ of the
@0→fN# and @p→fN# waves to the@0→p# wave,a51; ~b! the
splitting of a @0→p# wave to the@fN→0# and @fN→p# waves,
a521.
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