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Dynamics of solitary waves in smectic=* liquid crystals
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The dynamics of solitary waves in ferroelectric liquid crystals is considered in the context of an overdamped
double sine-Gordon model. Various possible types of single waves are studied. The dependence of wave
velocity and scale on the system parameters and initial conditions is found. Sharp initial profiles lead to waves
with a universal form. The parameters of the wave arising from smooth profiles are determined also by the
scale of the initial conditions. Numerical calculations show good agreement with analytical results. The pos-
sibility of using such waves to improve the characteristics of liquid crystal devices is also discussed.
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[. INTRODUCTION In the present paper some parameters of solitary waves,

Static and dynamic structures in liquid crystals, formingsuch as the velocity and the width, in FLCs are determined.
because of inhomogeneity in space and the time-dependehhe analytical dependence of parameters on the amplitude of
distribution of the average molecular orientation, are the fothe electric field and properties of the liquid crystal is found.
cus of intensive researgti—3]. The study of such structures A choice of appropriate boundary conditions is shown to
is useful both for determining liquid crystal properties and agncrease the velocity of waves. Using such a possibility, one
a basis of new electro-optical devices. The average local m¢:an decrease the switching time of liquid crystal electro-
lecular orientation is described by the unit vectgrcalled — optical devices. The paper is organized as follows. In Sec. Il
the director. In many cases solitary waves octwalls,” the model for describing FLC dynamics, based on an over-
“fronts,” or “kinks” ) that propagate from a region with damped double sine-GorddiDSG) equation, is presented.
stable molecular orientation into an unstable or metastablé/e describe also a simple procedure for determining the
region. Often, such a wave has an asymptotically universavave velocity. Possible types of solitary waves in smectic-
form and velocity, not dependent upon the peculiarities ofC* samples and the dependence of the velocity on the sys-
the initial conditions. In such cases the corresponding equdem parameters are considered in Sec. lll. The influence of
tion for the director motion is frequently a type of nonlinear various boundary conditions and the evolution of solutions
diffusion equation that exhibits such phenomena. Differenfrom two-kink initial conditions are also discussed. Section
processes in liquid crystals are described by this approachV briefly summarizes the results obtained.
orientational waves in nematics under magnetic or electric
fields, cholesteric-nematic transitions induced by a magnetic
field, walls in electro-hydrodynamic instabilities in liquid Il. MODEL AND METHOD OF ANALYSIS
crystals, switching in smectic liquid crystals, etsee Refs.

[2,4], and the references thergin Smectic€* liquid crystals are layered structures in which

The reorientation of molecules in ferroelectric smectic-the directom has the constant tilt angkewith respect to the

C* liquid crystals(FLC9 through a propagation of solitary layer normal. The azimuthal ang'le of the director chapges
waves (“domain walls”) was first investigated by Cladis gradually from layer to layer, forming the well known helical

et al.[5]. They analyzed the driven sine-Gordon equation bystructure [1]. This des_cription is valid fqr_ large_infinite
taking into account the inertia term. It is known that thesamplgs. We study thin or “surface stablllzgd F.LC cells
influence of this term is negligible in many types of liquid [10], with thicknessd ofqrder less than .the helical pitch, and
crystals[1]. The model, based on a nonlinear diffusion equa-SUPPOSe that the smectic layers are oriented parallel toythe
tion, for solitary waves in FLCs was first suggested byplane. The influence of plate boundary surfaces in such cells

Maclennanet al. [6]. Further studies can be found in the is strong enough to suppress the helix, so that the director

review [7], where methods of analysis, theoretical resu|ts’distribution is uniform in thez direction and changes only in

and numerical calculations of FLC dynamics are presented€X direction(Fig. 1). The polarizatiorp is normal ton and

In this review both the cases of thick and thin liquid crystalthe Z axis. Let¢ be the azimuthal angle ¢, i.e., ¢= /2
samples are considered. The latter case is characterized by &/; Wherey is the orientation angle of the orthogonal pro-
strong influence of the boundaries upon the sample align€ction ofn onto the smectic layers. Assuming that the smec-
ment; that is, the surface alignment of the glass plates boundi€ tilt angle ¢ is constant, the equation for the director mo-
ing the sample cell affect the bulk behavior. Interesting exfion has the forn{7,11]

periments and numerical simulations for thin FLC cells are

presented i 8]. Results, based on a “marginal stability” 5 .

theory, for the velocity of solitary waves in smec@c- K= —PEsind+ €.E°Sinfo 1
samples are described [ifi]. 161 K= sing 4 sing cos¢, (1)
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T R gives all possible types of waves, while the two other theo-
P A AV vdVd ries allow us to find wave parameters. The approach can be
gl N il il N ol | g called “the principle of the least dissipation.” It means that
L L L L L the velocity of the steady state wave of E8). is equal to the
g N ) Y ) N lowest possible dissipation on the trajectory of the corre-
SOISINGIN I sponding ordinary differential equatidsee Eq.(4)]. The

A .. trajectory should satisfy appropriate boundary and other con-

ditions. Thus, instead of dealing with the dispersion relation
of the linearized version of Eq3) as it is in “marginal
stability theory,” one can analyze E).

p E Step (i) Since we are interested in stationary solutions, it
is reasonable to reduce E@) to an ordinary differential
equation by introducing the usual variatie= ¢—v 7, where
v is the wave velocity. This yields the equation

FIG. 1. Director distribution in a thin “surface stabilized” FLC d2¢ d¢ dV(¢) dV(¢)
cell. “Nails” mean molecules are directed out of the figure plane. —+v—s+—F—=0, F(dp)=——7—. (4

dXx?2 dX do¢

d¢
where 7 is a viscosity coefficientK is an elastic constani . . . . . .
is the magnitude of the electric field applied in the plane oqutuatt'pT\;A') IS tr;ﬁ eqléagor;eo;fr?gtlon ()tfoa’,pa_ztrl]cle()é?f_a
smectic layers parallel to theaxis, ande, is the dielectric pio r?tn ialV(¢) in the presen ISsipation™with coetti-
anisotropy. In the notation of the smectic continuum theoryc entv.

; ; : : : Step (i) Find equilibrium pointse, of Eq. (4) or static
of Leslieet al.[12,13, » is equal to the rotational viscosity | e -
coefficient A5 of the director around a fictitious “cone,” uniform states of Eq(3) from the conditiondV(¢)/d¢=0.

while K =B, The first term on the right-hand side of Ea) Check the stability of these equilibrium points by calculating

" — A2 2 " "
is the ferroelectric torque and the second term is the dielec- (de) =dV(e)/dp”. 1T V'(de) <0 [V'(¢e)>0], the

tric torque. Boundary conditions ought to be chosen so thaR®iNt ¢e iS stable(unstable. Determine the type of equilib-
B(x=—dI21)= ¢, and $(x=d/2}t) = g Whered, and ¢ rium points in the phase plane by finding characteristic ex-

are constants. Nevertheless, to enable a more tractable invénentsh (¢= et Spe ™)
tigation that exhibits the qualitative features and the general vE W= AV (ho)
properties of solitary waves in the above system, we consider A (V,pg) =— e (5)
the case ad—o. Consequently, we consider the case of an 2
infinite system.

In dimensionless variables, E(l) has the forn{7]

If Ao are complex with Im{.)#0, thend¢, is a focus. If
N are real and\ ;A\ _<0 then¢, is a saddle §), while if
_ i i - \. are real and\ . A _>0, theng, is a node N). Note that
+osing+asin(2¢)=0, 2 * + e e .
b= et osing n2¢) @ stable (unstable points of Eq.(4) or minima (maximg of
where £=x/xo Xo=[K/(|PE))]¥2 r=tlty, to=n/(|PE|), V(¢) correspond to unstab(e;table static states of Eq3)
o=SgNnE), a= — e, E sir? 6/(87P). Since Eq(2) is invari-  (Se€ also the paper by Lam in REZ| and review{7]).
ant with respect to the transformation- — o, ¢— m— ¢ or Step (iii) Construct possible types of solitary waves.
¢— 7+ ¢, we consider only the cage=1. Equation(2) is ~ Hereafter we assume thap(—x=,7)=¢_ and ¢(=,7)
the overdamped double sine-Gordon equation, which ca #r. Where ¢, ,¢r are static states. Hence the solitary
also describe the dynamics of smedfidiquid crystals sub- Wave is a front moving from a stable state to an unstable
jected to electric fields that are tilted with respect to the(metastablestate. In order to simplify this step of the pro-
smectic plane$14,15. Equation(2) is a type of nonlinear cedure it is easiest to plot the pha§e plane consisting of
diffusion equation for which it is known that solitary waves andde/dX for Eq. (4). The phase trajectory, connecting two
arising from a wide class of initial conditions have a univer-given equilibrium pointsf, and ¢, then corresponds to a
sal form and velocity4,16,17. solitary wave. As a result of the boundary conditions for Eq.
Let us describe the procedure for finding asymptotic val{(3). any equilibrium point cannot be a focus; this indicates
ues asr— o for the wave parameters in the nonlinear diffu- that only the following types of solitary waves are possible:

sion equation of the form [N=NJ, [N=S] or [S—N] and[S—S]. Here, the notation
[A—B] indicates a front moving from\ to B as X—oo.
¢~ et F()=0, (3) Step (iv) Find the asymptotic velocity as—« and the

width of each solitary wave. AhN—N] wave is usually a
where F(¢) is some nonlinear function. Boundary condi- collection of two or more waves, and it should be considered
tions are of the first or the second king =0 at £= *+) separately(see Sec. I). In most casessee[4,17,19), the
and initial conditions are assumed to be piecewise continuvelocity of [ S—S] waves is definite; i.e., the phase trajec-
ous. The procedure below is some combination of phaseory, connecting two saddle points, exists only for a unique
plane analysis(see, e.g.[4,16,17), “marginal stability”  value of the “dissipation”v=v,. This means that any ini-
theory[19,20], and Hagan's theory18]. We believe that this tial condition with boundary conditions, corresponding to
procedure is one of the simplest ways to obtain complete ansaddle points, tends to a solitary wave moving with speed
exact information about solitary waves. Phase plane analysis. Another situation is the case of solitary waves with a
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TABLE I. Types of solitary waves.

Parameter Wave velocity for
a Wave Asymptotic initial conditions
(oc=1) type states Sharp Smooth
a<-1/2 [S-S] [én— (27— o) ] 0 0
[S—N] [¢n—0] Vi Vig
[S—N] [dn— 7] V3 Vap
[S—N] (27— ¢n)— 7] Vs Vg
la|<1/2 [S—S] [0—27] 0 0
[S—N] [0— ] =V3 Vg
a>1/2 [S-S] [0—27] 0 0
[S—N] [0— o] =V, Vog
[S—N] [7— én] Va2 Vg
[S—N] [7— (27— ¢n)] Vo Vag
[S—-S] [0— 7] Vg Vg,

node as one of the asymptotic states. As for any equilibriunwhere the inde)3 indicates dependence on the initial rgie
point, a node is characterized by two eigenvallg=e Eq. Therefore, any sharp initial condition tends to a solitpKy
(5)]. The greater in absolute value is called “usual” and one— S] wave with a universal shape and velocity, while a
says thatd(&,7) decays iné at a usual rate. The other ei- smooth initial profile tends to a solitary wave with its shape
genvalue is “accidental” and the corresponding rate is callecand velocity depending on the initial rag Details, restric-
accidental. In the case>0, so thatV(¢)>0 and\ >0, tions for the functionV(¢) and proofs of some related re-
\ . is the usual eigenvalue and_ is the accidental eigen- sults can be found ip18].
value. These eigenvalues determine space scales, dependingThe space scale of the wave, or the width,, can be
on how the evolution of initial conditions changes. Let usdetermined as the half-amplitude width @f¢(¢,7). The
assume that the behavior ¢{ £,0) at infinity is as follows:  width w,,, can be estimated by using characteristic expo-
nents, so thatvy,~1/M\(v,¢. )+ 1\ (v,dRr), where the ap-

d(€,0)=¢ +6,% as é——, (6)  propriatev from Eq.(8) or Eq.(10) should be chosen.
The velocityv* is the same as that predicted by marginal
H(£,0)= pp+ 8,6 PE  as g, 7) stability theory[19,20. It follows from the theory that there

exists a threshold velocity, so that fast traveling waves are
where 3>0. One says the initial condition is “sharp,” if stable. Due to a “selection mechanism,” the asymptotic ve-
B>\y, and “smooth” when this inequality is reversed locity tends to the threshold value. However, the theory does

wherel, is the threshold scale. The velocity of sharp initial "0t consider the dependence of the velocity on the initial
profiles for solitary[N—S] waves is determined from the conditions for smooth profiles. Notice that E¢8)—~(10) are

condition that ensures that. is real or equivalentlyD valid under the assumption that _the corresponding wave is
=v2—4V"(y) =0 Whereqs,\,_is a node equilibrium: there- monotonic Below, we algo consuj_er cases where our ap-
fore the velocity is given bysee[4,16,17) proach, and that of marginal stability theory, are not appli-
cable. It is shown that marginal stability theory can be ex-

* _ NI tended to incorporate additional conditions. In the case of the

vi=x2Wi(én). ®) overdamped DSG equation the additional condition of mono-

The choice of sign in the above depends on where the nodté)nICIty for the asymptotic profile should be supposed.

¢y is situated. The threshold scale can be found from the
condition Ill. APPLICATION TO THE OVERDAMPED DSG

EQUATION

Mn=INE (V)= v /2] ©) The reduction of the overdamped DSG equati@nhas

the form of Eq.(4) with the potential
The asymptotic velocity for smooth initial profiles is de-

termined from the conditionn_ = g. This means that the V(¢)=—[o(1—cos¢)+a(l—cog2¢))/2]. (1)
behavior of the initial profile ass— *o determines the
shape of the resulting wave and consequently its velocCityyherefore for any parametex there exist static stateg
Thus the velocity of a solitaryN—S] wave arising from  _ 7. "\wherek is an integer; further, fofa|>1/2, additional
smooth initial conditions is statesy = + cos [ —o/(2a) ]+ 27k appear in the system. Al
5 o possible types of solitary waves, corresponding to equilib-
vi= L BTHV(én) rium states at= =+ with the appropriate wave velocities,
R

(10 are listed in Table I, where the velocities are calculated using
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Egs.(8) and (10): ¢ (rad)
vi=*+\—4(c+2a), viz=*(B*-o—2a)lB, 2
4a%—g? 1
o= e, o= g4 2T [, :
(12) t 50
vs= £ VA0 28), Vsp=(BP+o—2a)lB. S0 P g

The dependence of; (for c=1 anda<0) on the system FIG. 2. Typical evolution of th¢0— ¢y] wave fora=1.

parameters was also found by Maclenmaral. [7], who ap- _ o
plied the result from Ref[16]. The velocityv, corresponds lar. Results, summarized in Figs. 3 and 4, show a good

to the exact solution of Eq2) found by Schilleret al.[14]: ~ agreement between the two approaches. Figure 3 represents
the dependence of the asymptotic velocity on the pararaeter

H(& 7)=2 tan LexpV2a(x—v,t)], (13)  for various waves, while Fig. 4 shows the dependence of the
asymptotic velocity on the space scale of the initial condition
v,=[1/(2a)]Y2 dependent upog. However, there is a noticeable deviation

in the results fof 0— ¢y] and[0— 7] waves, whema is
The dynamics of solitary waves in FLCs was also considered|ose to 1/2. Numerically obtained velocities exceed the ex-
by van Saarloogt al. [9], who studied only the case f00  pected theoretical valugsee Eq.(12)]. This result can be
— ] waves for different values of fields, while other types explained in the following waywe consider for simplicity
of waves were not analyzed. The exact solution, 8¢&), only a[0— ¢y ] wave. Indeed, the equilibriung, becomes
and other complex solutions to E), can be derived via a a node at=v,, but the separatrik0— ¢y ] also crosses the
Painleveanalysig 21]; Stewar22] has examined the stabil- ¢ axis at some pointsc> ¢y (Fig. 5. The corresponding
ity of this solution in the context of traveling waves for non- solitary wave is therefore not monotorigee the inset in Fig.
linear diffusion equations and Cladis and van Saarf[dd$  5). The monotonic profile will be realized fov>v,, at

have also discussed marginal stability. which the separatrix approaches the pafnf from below.
To check the analytical predictions we calculated &).
numerically foro=1 and various values for the parameder 7 L
Both piecewise linear and tanh initial conditions were used. A m>2ng )
The first type of profile to be considered consists of two 6 o [0>9] ]
uniform states at the ends of the space interval, connected by sl v >0 ]
a linear function. The second type considered is represented
by the equation %’ 4l v, v, .
g
_ ® 3 .
b=+ ¢R2 L 1+ tanhge), (14) g
2 [q)N->0] 7
for some constanB. The calculations were performed using i * o> & ]
the explicit finite difference metho¢see, e.g.[23], Chap. ol e
17) with a four-point, two-layer scheme. The space and time 5 432101 23 45
steps were equal to 0.05 and 0.0005, respectively, for most (a) Parameter a
calculations. Fixed boundary conditiorg = L/2,7) =const
were used. The parameterwas set to 1 and the length of 30
the systenil was varied from 50 to 100. It should be noted
that numerical simulations of Eq2) in a wide region of 25r
parameters were also performed by Maclenearmal. [7]. -
They have computed director reorientation times as a func- >" 20
tion of the electric field and system parameters. The authors ‘E
of paper[7] have also shown that for small (or for small s 15
E), the dynamics are conditioned by transition processes, g .
while for cells with large enough. (or for large E) the = Lo Theory
dynamics are determined by the evolution of a steady state sl = Numerics
wave. Our consideration corresponds to the case of large ’ , ) , . ,
when the obtained formula€l2) are valid. An important 06 04 02 00 02 04 06
point is that we also consider various boundary conditions. b) Patarmeter a

In all numerical simulations, after a short transition pro-
cess, the solitary wave moves with fixed velocity and form  FiG. 3. Comparison of analyticalines) and numericalpoints
(within the accuracy of C§|CU|at|0hSTh? ty.plcal evolution  results for sharp initial conditions. Corresponding waves are indi-
for a[0— ¢y] wave form is presented in Fig. 2; the dynam- cated near each type of poira) |a|>1/2; (b) |a|<1/2, [0— ]
ics of solitary waves with other boundary conditions is simi-wave.
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10 - ¢ (rad)
s 3
—— -7
18 e 2
8E | —emvyy r ;
S -
z . M P 0
L e A t5 ik 50
> A - -
e . e @ 0750 25 ¢
z ¢ " el o
D 0
P o ¢ (rad)
2 o5 5
I 2 3 4 5 6 17 1
x=1/p 0
. N 5 25 50
FIG. 4. Dependence of the wave velocity on the initial rate for 0
smooth initial conditionsa= —1 for the[ ¢y— 0] wave withv, 4, b 1075 -25 13
Xom=2.0; a=1 for the [0— ¢y] wave withvz, Xopn="1.23; and (b)

a=—1 for the [ ¢y— 7] wave withvgs, Xopn=1.16, wherexoy,

=1/\y, [see Eq(9)]. FIG. 6. Sensitivity to small variations of boundary conditions

for a [0—¢y] wave. (@ #(501)=1.01¢py; (D) ¢(501)
=0.99, .

We note that, in this case, the absolute value of the

asymptotic velocity corresponds to thenimal velocity, sat-

isfying both the condition that the equilibriughy is a node evaluated agl/v;. Possibly the most important result for
and the condition that the resulting profile is monotonic.applications is that the velocity of a wave havigg as one
Thus, the conclusion gained from the marginal stabilityof the asymptotic states is greater than the velocity in other
theory, that the marginal value of velocity is realized asymp-cases(see Fig. 3. Moreover, the velocities;, i=1,2,3,
totically, is valid in this case also when the aforementionedncrease in absolute value with increasing magnitude of the
additional restriction on monotonicity is taken into account. electrical field|E| (or, equivalently, increasingg|). There-

For almost all solitary waves, listed in Table |, the wavefore the switching time is seen to be essentially improved by
width decreases with increasing absolute value of thehoosing appropriate boundary conditions. The key idea is
asymptotic velocity, when the parameterchanges. More- that one of the conditions should correspond to the lowest of
over, the product ofv;| andw,, is seen to be approximately the minima of the potentia¥/(¢).
constant for a wide range o values. This observation Another problem is the difficulty in preparing samples
agrees with Eq(9) becausen,,, can be evaluated as\l. with exactly the required boundary conditions discussed
The[0— 7] wave for 0<a<1/2 does not satisfy this regu- above. The sensitivity to small variations of values at the
larity, since both the wave velocity and the wave width de-boundaries for th¢0— ¢y] wave is shown in Fig. 6. If the
crease with increasing. boundary valuep(+ ,t)> ¢y then the wave will transform

We now discuss the possibility of applying our results toto a[ 0— =] wave, after which it will move with velocity ,.
real cells. We can use formulg&gs.(12) and(13)] for v, if If the boundary valuep(+,t)< ¢y, then the value ofp
the cell thickness is much greater than the scale of the solnear the right end of the interval decreases to 0; i.e. the
tary wave,d>1/\.|. In this case the switching time can be switching will be faster than predicted. A solitary wave with
an unstable state as one of the boundary conditions is physi-
cally an impossible object when considerindjnite systems.
However, similar structures can be realized in finite FLC
cells. Suppose that the boundary condition on one cell plate
corresponds to the stable state, while on the other plate the
boundary condition represents an unstable state. With a
switch of the electric field from zero to an appropriate value
Eq, the solitary wave, which is a front from a stable to an
unstable state, will propagate. We believe that the velocities
of such waves in finite samples will be close to those veloci-
L o ties predicted by Eq12) for infinite systems. Probably, the

. . . switching speed could be optimized for sign reversing fields.
0 1 5 3 4 Note that a change in the sign Bfwill give a different value
of ¢y when|a|>1/2, so that one of the boundary value (
or ¢g) Will not be the static state. Therefore, the switcheof

FIG. 5. Phase space of Eqg},(11) for a=0.4 andv=v,; from Eq to —E, will lead either to the breaking of the un-
=0.894, calculated by using E(L2). The phase trajectory crosses Stable state or to the propagation of several waves. Choosing
the ¢y axis at the poinip= ¢ . The inset represents the solitary appropriate values of system parameters Bgdnost likely,
wave corresponding to this trajectory. one could minimize the switching time. The results presented

10l phase trajectory

05
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here are novel and the consequences of reversing the field
have yet to be exploited. Nevertheless, considering the single
signedE field yielded some unexpected results, which are
worthy of future investigation from both the theoretical and
experimental points of view.

To evaluate the wave width and velocity we use the fol-
lowing values for the system parameteks~10 ' N, P
~10 % C/m?, 5~10 3 Pac, E~5x1 V/Im. Then we
have the space scalg~0.4x10 ® m and the time scale (@)
to,~2x10"° s, so that the characteristic velocity ¥g/t,
=KPE/7»~0.02 m/s. Therefore, for different values Bf
the wave velocity is of the order 18 to 101 m/s, while the
width is ~0.5x 10 ° to 5x 10" % m. The assumption that
— oo is correct for cells with thicknesg~ 10 to 40um. The
switg;hing time in such cells is therefore of the order 1@

10 s.

The results for solitary waves can be used in the analysis
of the evolution of multikink profiles. Let us show this by
considering the propagation of two solitary waves. Suppose
that for some eq_u'“b”um statéy,, the waves ¢_L_¢m] FIG. 7. Evolution of two-kink wavesga) “Annihilation” of the
and_[¢m— ¢Rr] exist. Let us then look for a solution to Eq. [0— ¢y] and[m— ] waves to thd 0— 7] wave,a=1; (b) the
(2) in the form splitting of a[0— =] wave to the[ ¢y—0] and[ dy— 7] waves,

a=-1.

¢ (rad)

S = o w

B(&,7)= & 1)+ %(&,7)— b, (15)

Fig. 7(b). Notice that the evolutions displayed in Figsa?
which can be considered as the superposition of two solitargnd 1b) are realized for opposite signs of the electric figld
waves[ ¢, — ¢,] and[ ¢,— Pr]. Substituting Eq(15) into  so that one can consider some of the stages in Fig. 7 as being
Eqg. (2), one can obtain a set of equations describing theepresentative of the evolution @f after switching the di-

“interaction” of solitary waves, labeled andB: rection of the field.

= pfp+ o cod ¢B— ¢ sin
V. CONCLUSIONS

+a{cogd2(¢®— ¢p)Isin(2¢™)}=0, (16)
¢?_¢?§+UCO$¢A_ b)sing® !n this paper a proc_:edure.for _f|nd|ng th.e para_meters of
solitary waves for nonlinear diffusion equations with appro-
+a{cog2(p"— ¢ 1sin(2¢68)}=0. (170  priate boundary conditions is described. By using this proce-

dure we have found parameters of solitary waves for

Let us consider the wavA with the center(or extrema of
¢7) situated até= ¢, If the distancel =£%—¢* between
the wave centers is large, the valae1—cos@®— ¢y, in
some neighborhood of the poigf is small,e<1. Then the
first equation(16) of the above set can be written as

2= P+ (1—e)osing +(1-4e)asin(2¢*)=0.
(18)

Assuming both¢” and ¢ are “sharp” solitary waves, the
parametek can be evaluated as= 5 exp(—|v|L/2), whered
is some constant. Therefore the velocity of thevave tends
exponentially with increasing distandeto the velocity of
the single[ ¢, — ¢,,,] wave.

smecticC* liquid crystals. We have shown that, by choosing
appropriate boundary conditions, the resulting solitary waves
have velocities greater than the velocity of @ =] wave.
This fact can be used for improving the switching time for
electro-optical liquid crystal devices by optimizing the
boundary conditions in finite cells to approximate those dis-
cussed above. For example, a cell designed to hiyas
one of its boundary values can possess a faster switching
time than that obtained via the usy&— =] wave; this has
been discussed in detail in Sec. Il above. The results, ob-
tained for solitary waves in infinite systems, can therefore be
exploited in the analysis of switching processes in finite sys-
tems and for studying the general evolution of multikink

The numerically calculated evolution of two kinks is Profiles.

shown in Fig. 7. The process of the interaction 6f- ¢y ]
and [ m— ¢y] waves is demonstrated in Fig(aJ. These
waves move towards each other with velocities closeJto

then they form 4 0— ] wave, which propagates into the

metastable stater with velocity v,. Wave velocities ob-
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